

Dedicated to innovation in aerospace

Towards dynamic cyber security risk assessment of military aircraft

Piet Hoogeboom (Theo Verhoogt, René Wiegers, Judith van Bruggen, Nikita Noskov)

- NLR short overview
- Cyber security risk assessment methodology
 - Common elements
 - Layered approach
- Likelihood & example

Netherlands Aerospace Centre

- Non-profit foundation, supporting
 - Government & Industry
 - civil & military operations
- 600 employees
- €73 M revenue, 75% NLD, 21% EU, 4% international

Security Risk Assessment (SRA)

- Many SRA methodologies exist
 - Optimised for specific domain and/or application
- A high level SRA framework as communication mechanism is needed
- Each domain/organisation has its own (unique) security requirements and knowledge about security issues
 - No open communication about existing vulnerabilities
 - Many known attacks including details (e.g. internet)
 - Sophistication increases continuously

SRA – multiple threats

- Feared events / Operational risks
 - E.g. divert from intended mission
- Composite threats
 - Which combinations of threats lead to a potential feared event (scenario)
- Likelihood estimation
- Impact rating

Commercial drone – functional design

nlr

Likelihood estimation for a given threat (1/2)

A *perpetrator* is defined by its characteristics:

- Expertise
- Knowledge of the target
- Means
 - technical
 - window of opportunity (time needed versus time available)

	possessed by perpetrator P (capability)	needed to perform attack A (requirement)
Expertise	<i>C</i> ^{<i>P</i>} expertise	^{<i>R</i>} ^{<i>A</i>} expertise
Knowledge	<i>C</i> ^{<i>P</i>} knowledge	^{<i>R</i>} ^{<i>A</i>} knowledge
Means	C_{means}^{P}	<i>R</i> ^{<i>A</i>} means

Iikelihood of perpetrator P succeeding at attack A

Example:

Feared event: hampering navigation Perpetrator: a state-sponsored hacker Threat: GPS spoofing

	Perpetrator capabilities	Attack requirements	Excess perpetrator capability	Likelihood component		
Expertise	$C_{expertise}^{P} = 5$	$R^{A}_{expertise} = 2$	$C_{\text{expertise}}^{P} - R_{\text{expertise}}^{A} = +3$	$L_{\text{expertise}}^{A \times P} = 0.95$		
Knowledge	$C_{knowledge}^{P} = 4$	$R_{\text{knowledge}}^{A} = 3$	$C_{\text{knowledge}}^{P} - R_{\text{knowledge}}^{A} = 1$	$L_{knowledge}^{A \times P} = 0.73$		
Means	$C_{means}^{P} = 4$	$R_{means}^{A} = 5$	$C_{\text{means}}^{P} - R_{\text{means}}^{A} = -1$	$L_{means}^{A \times P} = 0.27$		

$$L^{A|P} = L^{A|P}_{expertise} \times L^{A|P}_{knowledge} \times L^{A|P}_{means} = 0.19$$

Likelihood estimation, example (3/3)

Per threat scenario

	Impact areas				Criteria			
Impact rating	Flight safety	Communication	Navigation	Surveillance	Task execution	Damage Human	Damage Material	Damage Environment
5 - Catastrophic	High	High	High	Impossible	Complete failure	Fatalities	> 10.000.000	Catastrophic impact
4 - Critical	Some but not all of the HIGH consequences above	Medium- High	Medium- High	Medium- High	Almost complete failure	Multiple severe injuries	> 1.000.000, < 10.000.000	Long term impact
3 - Severe	Medium	Medium	Medium	Medium	Partial failure	Severe injuries	1.000.000	Noticeable impact
2 - Minor	Some but not all of the MEDIUM consequences above	No-Medium	No-Medium	No-Medium	No failure, but additional effort	Minor injuries	> 5000, < 1.000.000	Short term impact
1 - No impact	No	No	No	No	No failure	No injuries	< 5000	Insignificant

Fully engaged Netherlands Aerospace Centre

NLR Amsterdam Anthony Fokkerweg 2 1059 CM Amsterdam

p)+31 88 511 31 13 f)+31 88 511 32 10
e)info@nlr.nl i)www.nlr.nl

NLR Marknesse Voorsterweg 31 8316 PR Marknesse

p) +31 88 511 44 44 f) +31 88 511 42 10
e) info@nlr.nl i) www.nlr.nl

Out = in[1] x in[2] x x in[n]

Out = $\prod_{1}^{n} in[i]$

Out = 1.0 - (1.0 - in[1]) x (1.0 - in[2]) x x (1.0 - in[n]) Out = 1.0 - $\prod_{i=1}^{n} (1.0 - in[i])$

Assumption: inputs are independent from each other, otherwise calculation becomes more complicated